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Abstract

In this paper we study the superconvergence of the discontinuous Galerkin solutions for nonlinear hyperbolic partial
differential equations. On the first inflow element we prove that the p-degree discontinuous finite element solution con-
verges at Radau points with an O(/f+2 ) rate. We further show that the solution flux converges on average at O(h2P+2 ) on
element outflow boundary when no reaction terms are present. For reaction-convection problems we establish an
O(hmin(2p+ 2.P+ 4)) superconvergence rate of the flux on element outflow boundary. Globally, we prove that the flux con-
verges at O(h2 P+I) on average at the outflow of smooth-solution regions for nonlinear conservation laws. Numerical
computations indicate that our results extend to nonrectangular meshes and nonuniform polynomial degrees. We fur-
ther include a numerical example which shows that discontinuous solutions are superconvergent to the unique entropy
solution away from shock discontinuities.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The discontinuous Galerkin (DG) finite element method has been used to solve first-order hyperbolic
problems and is gaining in popularity. The DG method was first used for the neutron equation [24]. Since
then, DG methods have been used to solve hyperbolic [7-10,15,14,16,20], parabolic [17,18], and elliptic
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[6,5,25] partial differential equations. For a more complete list of citations on the DG methods and its
applications consult [13]. A main advantage of using discontinuous finite element basis is to simplify adap-
tive p- and h-refinement with hanging nodes.

High-order, p > 0, DG solutions for nonlinear hyperbolic problems exhibit spurious oscillations near
discontinuities. These oscillations may be reduced by using either limiting [10,11] or shock capturing
[12,21] techniques that force the DG solution to converge to the unique entropy solution under mesh refine-
ment. Many techniques to suppress spurious oscillations have been suggested but none is totally successful.
From previous computational experience [1], we discovered that limiting can reduce spurious oscillations
near shock discontinuities but does not enhance superconvergence properties of the DG solution near
shocks. For these reasons, we restrict our superconvergence error analysis to the local error behavior in
smooth-solution regions.

Recently, Adjerid et al. [1] proved that smooth DG solutions of one-dimensional linear and nonlinear
hyperbolic problems using p-degree polynomial approximations exhibit an O(hp+2) superconvergence rate
at the roots of Radau polynomial of degree p + 1. They used this result to construct asymptotically correct
a posteriori error estimates. They further established a strong O(h 2P+I) superconvergence at the downwind
end of every element. Krivodonova and Flaherty [22] proved a superconvergence result on average on the
outflow edge of every element of unstructured triangular meshes and constructed a posteriori error esti-
mates that converge to the true error under mesh refinement. Adjerid and Massey [4] extended these results
for multi-dimensional problems using rectangular meshes and presented an error analysis for linear prob-
lems and problems with a nonlinear reaction term. They showed that the leading term in the true local error
is spanned by two (p + 1)-degree Radau polynomials in the x- and y-directions, respectively. They further
showed that a p-degree discontinuous finite element solution exhibits an O(hP+ 2) superconvergence at
Radau points obtained as a tensor product of the roots of Radau polynomial of degree p + 1. For a linear
model problem they established that, locally, the solution flux is O(h2p+2) superconvergent on average on
the outflow element boundary and the global solution flux converges at an O(h2P+l) rate on average at the
outflow boundary of the domain. They used these superconvergence results to construct asymptotically
exact a posteriori error estimates for linear and nonlinear hyperbolic problems. In this paper, we extend
the error analysis of Adjerid and Massey [4] to nonlinear hyperbolic scalar problems of the form

V. F(u) = h(x,y), (x,y) E 92 = [0, I]f (1.1)

and

V .F(u) + 0(u) = h(x,y), (x,y) E 2 = [0, 1]2, (1.2)

with boundary conditions

u]I° = g. (1.3)

The inflow and outflow boundaries are defined as

= (xy) E d u. v '< 0 (1.4a)

and

dF
-(X•2Iu{ . V > 0 (1.4b)

where the boundary of 92, a•2 = 80in U -out and v is the outward unit normal to 30. The difficulty with
nonlinear conservation laws (1.1) is that in general for smooth flux function F(x,y) and smooth boundary
conditions g, smooth solutions do not in general exist for all (x,y) E •. Thus, only weak solutions can be
defined. Furthermore, a weak solution is unique if it satisfies the entropy condition [19].
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In order to perform an error analysis on the first inflow element, we assume F: R -* R2, qb R -+ R,
u : R2 - R, h and g to be analytic functions. On the first inflow element we show that the DG solution
of (1.1) is O(h/'+ 2) superconvergent at Radau points and the leading term in the error is a linear combina-
tion of two Radau polynomials. Moreover, the flux is O(h2p+2) superconvergent on average on the outflow
boundary of the first inflow element. For reaction problems (1.2) the flux is O(hmin(2p+ 2"p+4)) superconver-
gent on the outflow boundary of the first inflow element.

If we further assume that u(x,y) is smooth on b such that

h c 2 and ai, C ffin, (1.5)

then the flux is O(h2P+1) superconvergent on average at the outflow boundary af2out.
Finally, computational results for a problem with a shock discontinuity reveal that similar local super-

convergence results hold in smooth-solution regions away from the shock. Thus, the error in smooth-solu-
tion regions propagates at a higher order.

This paper is organized as follows: In Section 2 we state and prove the main superconvergence results. In
Section 3 we show numerical results for several problems. We conclude with a few remarks.

2. Error analysis

In this section we will analyze the DG discretization error and show that the leading term in the error is
proportional to (p + 1)-degree Radau polynomials in the x- and y-directions. Prior to proving this result we
need to recall a few preliminary lemmas.

The weak discontinuous Galerkin formulation is obtained by partitioning the domain •2 into N = n x n
square elements and starting the integration with elements whose inflow boundary is on the domain inflow
boundary.

In order to perform an error analysis we consider the first element A = [0, h]z where h = 1/n and the space
ý/ý of polynomial functions such that

.9p+I C ^//p U {xP+',J+l1}, p > 0, (2.1a)

where .k is the space of polynomials of degree k

f k m
9k= qq= E Ec ý.x - (2.1b)

m=0 i=O )

These spaces are suboptimal but they lead to a very simple a posteriori error estimator. For efficiency rea-
sons we consider the smallest spaces that satisfy (2.1)

P k p

"= VIV = E cfx-'- + > +x'Y+'-' }" (2.2)
k=O i=O i=1

We note that tensor product elements satisfy (2.1).
Assuming d' (u(O, 0)) = [C, a2]t, with ai> 0, i = 1,2, one can prove that for h small enough the inflow

boundary of A is Fin = F1 U r 4 where Fr = {(x,0), 0 < x < h} and F4 = {(0,y), 0 <y < h}. The outflow
boundary rout = F2 U F3 with r2 = {(h,y), 0 <y < h) and F3 = {(x,h), 0 < x < h}.

The discontinuous Galerkin method for (1.1) consists of determining U(x,y) E "rp on A such that

fr v.(F(U-)-F(U))Vda+ f fd[V.F(U)-h(x,y)]Vdxdy=0, VV I '"Er. (2.3)
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The boundary data U- on Fi,, is

U-(X, A Rg, if (xy) C 1I, (2.4)
R9g, if (x,y) E r 4 ,

where ntw is the p-degree polynomial that interpolates w at the roots of (p + 1)-degree right Radau
polynomial

R;+I(ý) =Lp+i(c)-Lp(e), -1 , ( 1, (2.5)

with Lp being Legendre polynomial of degree p.
Once we determine the solution on the first element A we proceed to the elements whose inflow bound-

aries are either on the inflow boundary of 0 or an outflow boundary of A and continue this process until the
solution is determined in the whole domain. On an element whose inflow boundary is not on the boundary
of •2, U- is defined as

U-(x,y) = lim U((x,y) +-sv), (x,y) E F-i. (2.6)
$-0+

The discontinuous Galerkin solution satisfies the DG orthogonality condition which is obtained by multi-

plying (1.1) by V E fp, integrating over the element A and applying Green's formula to obtain

v .F(u)Vd a - I F(u) -VVdxdy= h(x,y)Vdxdy. (2.7)

Applying Green's formula to (2.3) yields

fr, v. F(U-) Vda + frouv. F(U)Vda -f J F(U).VVdxdy= f fJ h(xy)Vdxdy. (2.8)

Subtracting (2.7) from (2.8) we obtain the DG orthogonality condition

jfr. v. (F(U-) - F(u)) Vda + jfr., v. (F(U) - F(u)) Vdo

-//(F(U)-F(u)).VVdxdy=0, VVC p (2.9)

Using the mapping of A = [0,h]2 into the canonical element = [-1, 112 defined by x = h(1 + ý)/2 and
y = h(l + q/)/2 and fi(4, ii) = u(x(Q),y(nj)) we obtain the DG orthogonality condition (2.9) on the canonical
element

f vin v" (F((T-) - F(ý)) Pd&" J loutv" (F((J) - V(ý)) fld&

- f I (F(() - F(i)) . Vfld•dq = 0, Vk E C r. (2.10)

In the remainder of this paper we omit the A unless we feel it is needed for clarity.
Now, we recall the following two preliminary lemmas.

Lemma 2.1. If Qk E ý"rk and ac C R2 satisfy

fri..vQkVda- f 16c.VVQkd dd =O, VVCErp, k<p, (2.11)

then

Qk=o , kS<p. (2.12)

Proof. See Adjerid and Massey [4]. []
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Lemma 2.2. Let w E C°(0, h) and rtw be a p-degree polynomial that interpolates w at Radau points on [0, h].
Then the interpolation error

wx()- 7tw(x(0)) = • Q.(e)h", (2.13a)
k=p+ I

where
w(P+l(O )i(4 -4)4 - , ' p) =cp+,R•+• j (2.13b)

Ql()=2p+,(p + 1.

and
Qý(ý) =Rp++,(ý)rk--p-j(f), k >p+ 1, (2.13c)

with rk(c) being a polynomial of degree k.

Proof. See Adjerid and Massey [4]. El

Now we are ready to state the main result for nonlinear conservation laws.

Theorem 2.3. Let u and U be the solution of(1.1) and (2.3), respectively. Then the local finite element error

E = U - u, (2.14)

can be written as
00E hkQ4, q), (2.15)

k=p+l

where

Qp+=(R, q) =ARp++1( ) + f 2R 1++I(q). (2.16)

Furthermore, at the outflow boundary of the physical element A

v v (F(u) - F(U)) da = O(h2(+2). (2.17)

If the solution is smooth on -i=l Ai satisfying (1.5), we have the strong superconvergence

jou v (F(u) - F(U)) da = O(h 2P+1). (2.18)

Proof. The proof is established using the DG orthogonality condition (2.10). El

First we write the Taylor series of F about u to obtain

F(U) - F(u)= F (U - u)k. (2.19)Sý k!k=1

Assuming U- to be the interpolant of u on the inflow boundaries described in (2.4) and using (2.13) we see

that on an inflow boundary edge

F(U-) - F(u) = F(')(u)(U- - u) + O(h2p+2). (2.20)

The Maclaurin series of l<')(u) with respect to h can be written as

F(l)(u) E ZI'l h', (2,21a)
1=0
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where

I d'F(l)(u(x,y))Il l I [ d t h o ( 2 .2 1 b )
1! dh' h *

Combining (2.13), (2.21) and (2.20) to obtain

v )P+R+lj()LzhkrIk(6)] +O(h2 p+2 ) on F1 ,

v.- (F(U-) - F(u)) _= (2.22)
hP1RP+I()L hkr 4,k(n) + O(h2 p+2) on F 4,

where rI,k, r4,k E Yk.

The Maclaurin series of U - u and F(k)(u) with respect to h can be written as

U-u Z Qjh', (2.23a)
1=0

where

1 d'(U- u) (2.23b)
Q 'i) - 1! dh' L('

We also have

F(k)(u) = Z 4 '[h', (2.24a)
1=0

where

1 dIF(k)(u)

(!' = -[I dh' L=0 (2.24b)

Combining (2.19), (2.23) and (2.24) yields
0o

F(U) - F(u) = ZWkhk, (2.25)
k=0

where Wk E Yk x 9k.

Substituting (2.22) and (2.25) in (2.10) and collecting terms having the same powers of h lead to

Shk( v " WkVda - I Wk " VVd'd')

-hk( v.W-Vda+ v Y.WkVda- W -wk.VVd d,1)=0, V VEP, (2.26)
k=p+ I in. Jr.jt

where using (2.22) we have

+ R+ 1+(ý)rljk_,_(•) on F1,
V W- = Rp++ (q)r4,k,- I(n) on r4, p + I < k 2p + 1. (2.27)
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The 0(1) term in (2.26) with V= 1 yields
ý ( 0 D[+1Qllt

WO= Q0 (- _...,) " 0 (2.28)

which in turn leads to Qo = 0. We note that, for instance, for F(u) = [u2/2, u]t there exists Qo 0 0 solution of
(2.28) which corresponds to a nonphysical DG solution with E = 0(1). Here, we will not consider such non-
physical solutions.

By induction the O(hk), k <p + 1 leads to

/ v.OQkVdar - / Qk4(D] -VVd~d = 0, VV c -p. (2.29)

Applying Lemma 2.1 we establish that Qk = 0, k = 1, 2,... ,p.
Following the same line of reasoning as in [4], we show that the leading term Qp+l can be split as

1 dP+'(U - u)(ý,q) op+1+ p, (2.30a)
Q+' -p+ 1)! -- h=O

where Q(P q,') E "//'p and
1 i+u1 •l

ýP+, = cI+ 2P+, (p + 1)! ýý+ (0, 0)R•-+, + + cp+,I 2P+, (p + 1)! ay-• (0, 0)Rp++, (q/). (2.30b)

Substituting (2.30) in the O(hIf1) term of the series (2.26) leads to

(Dil " vQ;+, VQda + 011] - vQ.+1 Vdor - IL (Jf[11 \/)l+j d di1 + 01o 1 -)I vQpVdor

01 1 -VVQPd~dq = 0, VV E 'Irp. (2.31)

Using (2.13) and (2.30b) we can show that

0111 -vQp+ Vd D1 ~+1Vd - DII -~vpi~n0 VVVK, (2.32)
d in 0 1 

Pj~ q O V~ P

Combining (2.31) and (2.32) with Lemma 2.1 leads to QP = 0. Using (2. 30) we establish (2.16).
Using (2.13) we can show that

j (D'lvQ-Vd =O, VVE/2zk, k=p+l,...,2p. (2.33)

Using (2.33), the O(hk), p + 1 < k < 2p, term of (2.26) yields

fro. t vQVda- J f f4 0VVQkd~d1=0, VV C -,pk. (2.34)

Testing against V = 1 we obtain

1-, ]. 0(kvda=O, k=p+l,...,2p, 
(2.35)

which establishes (2.17).



3338 S. Adjerid, T. C. Massey / Cornput. Methods Appl Mech. Engrg. 195 (2006) 333 1-3346

Next we prove global superconvergence by showing that on every element A

jrnv.-(F(U-)- F(u)) da +jfo v - (F(U) - F(u)) do'= 0. (2.36)

Summing over all elements A, c T2 we obtain

jaýi v - (F(U-) - F(u)) do' + Laou v - (F(U) - F(u)) do' = 0. (2.37)

Using (2.13) leads to (2.18). 0

Next, we will describe similar results for problems of the form (1.2) where the DG weak formulation
consists of determining U(x, y) E 'V on A such that

j v* (F(U-) - F(U)) V du+ JjZ[V F(U) ± q(U) -h(x,y)] Vdxdy= 0, VV E 'TV. (2.38)

In the following theorem we state a superconvergence result for nonlinear hyperbolic problem with reaction
terms.

Theorem 2.4. Let u and Ube the solution of (1.2) and (2.38), respectively. If u, F and 0 are analytic functions,
then the local error estimates (2.15) and (2.16) hold. Furthermore, we have the following superconvergence
results on the first inflow element

Jrt v~ (F(U) - F(u)) - O(hmin(2p+1p+4)) (2.39)

and

fotv~ (F(U) - F(u)) do' + IL[O(U) - 05(u)] dxdy = O(h 1+2). (2.40)

If the solution is smooth on h2 satisfying (1.5) and h2 = Ui-1A1, we have the strong superconvergence

v - (F(U) - F(u)) do' +J Jk(U) - 0b(u)] dxdy = O(h2P+'). (2.41)

Proof. The DG orthogonality condition is

jri v - (F(U-) -F(u)) V do + Ij v - (F(U) - F(u)) Vdo-

- 1LF(U)-F(u)) .VV+ [q(u) - ,(U)]Vdxdy= 0, VV E yr,, (2.42)

On the canonical element [_-1, 1]2 (2.42) becomes

jri v -(F(U-) - F(u)) Vdo' +jfou v -(F(U) - F(u)) V do

f J j(F(U) - F(u)). VV O(u) - (U)]Vd~d = 0, VV E "/(. (2.43)

Applying Taylor series to 0 about u we have

0()- q5(U) = -a(u)e - 2-Y(i) a(u) = 0'(u)- (2.44a)
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The Maclaurin series of a(u) with respect to h yields
-1 k+ 1)(u(x(c),()dku qk.

a(u) = 2-hkkQ(,),,y() E qk. (2.44b)
k=0 2 !d h=0

Now we substitute (2.44), (2.22) and (2.25) in (2.43), collect terms having the same powers of h to obtain

(Jro° v" WoVdT- f J Wo -VVd~d11)

+Eh~ ~ ~ I k Ek~a- %-VV -Zk.-'1VdcdT)k=1 \J Tout ff

+ t hk~ v.W•-Vdo-+ Vr -.WkVdu- L[Wk . VVi-Zk-I Vjd~dn 0:, VV C 'rp,

k=p+l Yin Id+

(2.45)

where

k

Zk = Z-,OQk-- (2.46)
1=0

and v. W- is given in (2.27).
Following the same line of reasoning as in Theorem 2.3 we prove (2.15) and (2.16) for problems with a

nonlinear reaction term. We note that the term in (2.44a) involving E2 is higher order and does not
contribute to our leading terms and that

1 0 if m '< p,

Z m{ -I if 1 (2.47)

We prove the strong superconvergence result (2.39) for nonlinear hyperbolic problems with reaction terms
by setting V= 1 in (2.45). Using (2.13), (2.15) and (2.16), to obtain

v. 4)l10 QP+1 dc" = 0. (2.48)

Setting V = 1 in the O(hk), k > p + 1 in (2.45) leads to

j ] v. JQi do- + v. -DI]do"+ILZkj _dd1= 0. (2.49)

Using (2.22) and (2.47) the O(h/+ 2) term leads to

voY -0111s, do- = 0. (2.50)

The O(h/+ 3) term yields
J v. b 1 Q1+3d" = - QQ+ 2d dq, (2.51)

which is not necessarily zero. Thus, we establish (2.39).
Now, using (2.42) with V= 1 and (2.22) establishes (2.40).
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Letting V= 1 in (2.42) and summing over all elements A1 c •2 lead to

Lai v. (F(U-) - F(u)) da + jou v (F(U) - F(u)) da J + J[0(U) - q(u)] dxdy-- 0. (2.52)

Applying (2.13) and (2.22) yields (2.41) which completes the proof of Theorem 2.4. El

3. Numerical examples

We will consider three examples to validate the superconvergence results of Section 2 for smooth and
discontinuous solutions.

1.2 1.2

1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 0

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1
x x

1.2 1.2

1 1

0.8 0.8

0.6 0.6.

0.4 0.4

0.2 0.2

0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
x x

Fig. 1. Zero-level curves of the error for Example 1 using p = 1,2, 3,4 (upper left to lower right). Radau points are shown with an 'x'.



S. Adjerid, T. C Massey I Comput. Methods Appl. Mech. Engrg. 195 (2006) 3331-3346 3341

Example 1. We consider the nonlinear Burger's equation

Uy + UU. =f(x,y), (x,y) E , (3.1a)

where 0 is the quadrilateral PIP 2P3P 4 where PI = (0,0), P 2 =(1, 1), P3 = (2, 1) and P 4 = (-0.5,2). We se-
lect the boundary conditions and f such that the exact solution is

u(x,y) = ,,3 + 2x2 +y 2. (3.1b)

We solve this problem on a uniform mesh having 16 elements with p = 1,2,3,4 and plot the 0-level
curves of the discontinuous Galerkin error in Fig. 1 with Radau points marked by x.

I i 3 3 1

0.9 0.9

0.80.
3 3 3 3 3 2 2 2 2 2

0.7 0.7S•' '4 3 3 3 3 3 2 2 2 2

0.6 0.606 • 4 3 3 3 3 3 3 2 2 2

>- 0.5 > .
4 4 4 3 3 3 3 3 2 2

0.4 0.4 -,, - - --;-0.4

0. A ul03 4 4 4 4 3 3 3 3 3 2
0.3 0.3--,- --- -., -•-0-3

4 4 4 4 4 3 3 3 3 3

0.2 1 H0.2 - --
4 4 4 4 4 4 3 3 3 3

0.1 0.1 1 - - 1 -
- I T4 4 4 4 4 4 4 3 3 3

0 
- - -++-,-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X X

Fig. 2. Zero-level curves of the error for Example 1 using nonuniform polynomial degree with Radau points shown with an V<' (left).
Distribution of the polynomial degree of the finite element solution (right).

10-1

100

lOei

100.4 10 °' 100.6 100.7
log(l/h)

Fig. 3. The error in the flux IPA on the outflow boundary of the first element versus l1h in the log-log scale for Example 2.
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These results show that the solution is superconvergent at Radau points which is in full agreement with
Theorem 2.3. Next we solve (3.1) with nonuniform p as shown in Fig. 2. The results shown in Fig. 2 indicate
that the superconvergence results of Section 2 are still valid for nonuniform polynomial degree starting with
higher degree on elements at the inflow boundary of the domain and lower polynomial degree on elements
at the outflow boundary. These results are yet to be proved for nonuniform polynomial degree.

Example 2. In order to show that the superconvergence result (2.39) is optimal, we consider the linear
hyperbolic problem with a reaction term

u. + 2u± + u = f(x,y), (x,y) E [0,1]2, (3.2a)

where the boundary conditions and f are selected such that the exact solution is

u(x,y) = (1 +x +y) 7 . (3.2b)

We solve (3.2) on uniform meshes having 4, 16 and 36 square elements with p = 4 and plot
IF, =[1r,,a 21•- v(u - U) da

versus 1/h in Fig. 3. As predicted by Theorem 2.4, these results show an O(hmin(2p+ 2 ,p+4 )) superconvergence
rate of the flux on the outflow boundary of the first inflow element.

Example 3. Let us consider the homogeneous inviscid Burger's equation

Uy + uux = 0, (x,y) E [-1, 1] x [0, 1.999], (3.3a)

subject to the initial condition

go(x, 0) = 1 + sin(itx)/2. (3.3b)

We select g1(0,y) such that the unique entropy solution is periodic and forms a shock discontinuity at the
point Q - 1, 1) which propagates along the line y = x + 1. We solve this problem on meshes having 5 x 5,
14 x 10, 21 x 15, 28 x 20, 35 x 25, 42 x 30, and 140 x 100 elements with p= 1,2. We plot the zero-level
curves for the error in Fig. 5. We compute the maximum errors at Radau points in five different regions

2 I
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0.4 
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Fig. 4. Regions 1-5 for problem (3.3).
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shown in Fig. 4 and present the results for all meshes and orders in Table 1. We also plot the maximum
errors versus mesh size for p = 1, 2 in Fig. 6. We note that the convergence rates are close to the optimal

0h 2)superconvergence rates in Regions 1, 2 , 4 and 5, for p = 1 and p = 2, while there is no convergence
in Region 3 which contains the shock discontinuity. These results are in agreement with the superconver-
gence results of Theorem (2.3) for the entropy solution in regions away from the shock discontinuity. We
note that high-order, p > 0, DG solutions are known to develop spurious oscillations near shock disconti-
nuities which explains the nonconvergence in Region 3. Spurious oscillations may be eliminated using, for

Table I
Maximum errors at Radau points for problem (3.3) in Regions 1-5

N xM Region I Region 2 Region 3 Region 4 Region 5

P =I
7 x5 2.3787e-03 6.1577e-02 4.4390e-01 3.0670e-02 4.7646e-02
14 x 10 5.7487e-05 3.8567e-03 4.4521e-01 2.7064e-03 9.8580e-03
21 x 15 1.7168e-05 1.6498e-03 4.3000e-01 6.9151e-04 4.4972e-03
28 x 20 7,4312e-06 1.0519e-03 5.8166e-01 3.1665e-04 2.0990e-03
35 x25 3.8739e-06 1.2146e-04 5.314fe-01 1.7085e-04 1.1055e-03
42 x 30 2.2684e-06 1.1820e-04 5.8720e-01 1.0250e-04 7.2652e-04
140 x 100 6.3664e-08 4.0439e-06 6.0357e-01 1.2124e-06 2.1123e-05

Rate 2.9636 2.4543 -0.091848 2.8665 2.8549

7 x5 1.0780e-03 3.5124e-02 4.5072e-01 2.3503e-02 5.4503e--03
14 x10 2.1984e-06 9.6276e-03 4.5917e-01 1.1295e-03 1.5127e-03
21 x 15 2.0416e-07 2.0612e-03 6.4203e--01 4.2546e-04 4.2145e-04
28 x 20 6.2627e-08 1.9124e-04 4.8639e-01 7.7144e-05 1.2900e-04
35 x25 2.5654e-08 4.4611 e-05 6.2678e-01 4.8348e-06 5.2180e-05
42 x 30 1.2284e-08 2.1228e-05 6.1557e-01 6.080le-07 2.8264e-05
140 x 100 9.7912e- I1 8.1746e-09 6.7466e-01 5.5857e-09 2.4411le-07

Rate 4.0167 6.2070 -0.053101 4.8788 3.8699

100 P .1 100 P=2

10.1

110.2

1 ~.2

10- Rgin
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Fig. 6. Rates of convergence for problem (3.3) on meshes have 7 x 5, 14 x 10, 21 x 15, 28 x 20, 35 x 25, 42 x 30 and 140 x 100 elements
on Regions 1-5 with p = 1 (left) and p = 2 (right).
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instance, shock capturing [21] or limiting [10,11] techniques. Adjerid et al. [I] used the limiting technique of
Biswas et al. [10] for one-dimensional nonlinear problems that eliminates spurious oscillations near discon-
tinuities while preserving superconvergence in smooth regions. We note that reliable shock detection is key
to successful adaptive limiting strategies [23].

4. Conclusions

We extended the results of Adjerid and Massey [4] to nonlinear conservation laws. We proved that the
discontinuous Galerkin finite element solution is O(If+ 2 ) superconvergent at the Radau points. We also
showed that locally the flux is O(h2p+2) superconvergent on average on the outflow boundary of the first
inflow element. In the presence of reaction terms we proved similar superconvergence results for the solu-
tion at Radau points and an O(hmin( 2p+ 2.p+ 4)) superconvergence rate for the flux on average at the outflow
boundary of the first inflow element. Furthermore, we showed that on sub-domains satisfying (1.5) the sum
of the flux on the outflow boundary and the reaction term is O(h 2P+l) superconvergent. The strong super-
convergence of the flux yields superconvergence of the solution at Radau points on every element. As
shown in Adjerid and Massey [4], these superconvergence results for discontinuous finite element solutions
may be used to construct asymptotically correct a posteriori error estimates for steering adaptive finite ele-
ment methods. Numerical computations of Adjerid and Klauser [3] suggest that similar superconvergence
results still hold for local discontinuous Galerkin solutions of convection-diffusion problems. The error
analysis described in this manuscript has been extended to semi-discrete DG methods for transient nonlin-
ear scalar hyperbolic conservation laws [2]. A more difficult problem is to extend the analysis to arbitrary
elements in smooth-solution regions and to the shock region with limiting or shock capturing. We will
investigate the superconvergence properties of the shock capturing discontinuous Galerkin method
[21,12] for hyperbolic systems. The preliminary work of Krivodonova and Flaherty [22] shows supercon-
vergence of the flux on element outflow boundaries for general unstructured triangular meshes, however,
no pointwise superconvergence has been observed.
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